On Grain Dynamics in Debris Discs: Continuous Outward Flows and Embedded Planets
نویسندگان
چکیده
This study employed grain dynamic models to examine the density distribution of debris discs, and discussed the effects of the collisional time-intervals of asteroidal bodies, the maximum grain sizes, and the chemical compositions of the dust grains of the models, in order to find out whether a steady out-moving flow with an 1/R profile could be formed. The results showed that a model with new grains every 100 years, a smaller maximum grain size, and a composition C400 has the best fit to the 1/R profile because: (1) the grains have larger values of β on average,therefore, they can be blown out easily; (2) the new grains are generated frequently enough to replace those have been blown out. With the above two conditions, some other models can have a steady out-moving flow with an approximate 1/R profile. However, those models in which new grains are generated every 1000 years have density distributions far from the profile of a continuous out-moving flow. Moreover, the analysis on the signatures of planets in debris discs showed that there are no indications when a planet is in a continuous out-moving flow, however, the signatures are obvious in a debris disc with long-lived grains. Subject headings: circumstellar matter – planetary systems – stellar dynamics
منابع مشابه
Metallicity of solar-type stars with debris discs and planets
Context. Around 16% of the solar-like stars in our neighbourhood show IR-excesses due to dusty debris discs and a fraction of them are known to host planets. Determining whether these stars follow any special trend in their properties is important to understand debris disc and planet formation. Aims. We aim to determine in a homogeneous way the metallicity of a sample of stars with known debris...
متن کاملMigration of extrasolar planets to large orbital radii
Observations of structure in circumstellar debris discs provide circumstantial evidence for the presence of massive planets at large (several tens of AU) orbital radii, where the timescale for planet formation via core accretion is prohibitively long. Here, we investigate whether a population of distant planets can be produced via outward migration subsequent to formation in the inner disc. Two...
متن کاملPlanet migration in three-dimensional radiative discs
Context. The migration of growing protoplanets depends on the thermodynamics of the ambient disc. Standard modelling, using locally isothermal discs, indicate in the low planet mass regime an inward (type-I) migration. Taking into account non-isothermal effects, recent studies have shown that the direction of the type-I migration can change from inward to outward. Aims. In this paper we extend ...
متن کاملA search for debris discs around stars with giant planets
Eight nearby stars with known giant planets have been searched for thermal emission in the submillimetre arising from dust debris. The null results imply quantities of dust typically less than 0.02 Earth masses per star. Conversely, literature data for 20 Sun-like stars with debris discs show that 5 per cent have gas giants inside a few astronomical units – but the dust distribution suggests th...
متن کاملVertical structure of debris discs
Context. The vertical thickness of debris discs is often used as a measure of these systems’ dynamical excitation, and as clues to the presence of hidden massive perturbers such as planetary embryos. However, this argument might be flawed because the observed dust should be naturally placed on inclined orbits by the combined effect of radiation pressure and mutual collisions. Aims. We criticall...
متن کامل